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I.  INTRODUCTION 

In recent years,  a number of  authors have considered the problem 

of wake collapse  in an incompressible,  stratified fluid.    These treat- 

ments nave usually involved a version of the linear Boussinesq approx- 
imation,  though some numerical work has  appeared.    While there  seems 
to be a consensus  about the phenoiuenology in the case of fully mixed 

wake (for which the linear approximation is, of course,   invalid),   it 
has seemed to us useful to treat a particularly simple version of the 
linear problem,  for which an exact  solution is obtainable.    The re- 
sults contain some  surprises,  and provide some insight  into the  limi- 

tations of the linear treatment. 



II.     BASIC EQUATIONS 

We study a linearly stratified fluid, with no boundaries, whose 

unperturbed density p   (z)  in the  vicinity of the region of  interest 

varies only in the vertical z-direction,  and gradually enough to 

justify a linear aiiproximation.    Thus 

D0(Z)*D00-BZ (1) 

where p      is a "mean" density for the problem.    The initial value 

problem is obtained by perturbing the density slope inside a cylinder 

of radius a 

6p(t=0) = ez r < a 
(2) 

= 0 r > a 

where the fully mixed case can be obtained formally by setting e  = 0. 

This state of affairs  is illustrated in Fig.   1.    We are working  in 

a two-dimensional coordinate system with axes z (vertical) and x 

(horizontal), with everything assumed independent of y.    We will 

also use polar coordinates  (r,a)  in the plane of the problem, with 

the polar axis vertical. 

Newton's second law, linearized, is 

p TT = - vp - pg S (3) 

where v is the fluid velocity (in the x-z plane),  p is the pressure, 

g the acceleration of gravity, and z a vertical unit vector.    Since 

the fluid is assumed incompressible, we have 

I       ■ Hi 



div v - |ß-  ♦  v •   Vn = 0 (4) 

which allows us to introduce the stream function 4,  a vector in the 

y-direction, defined by 

v - curl ^ (5) 

The curl of Eq.   3 yields 

poo at (curl curl V ^ ' g ZD * t (6) 

where the  insertion of p      is  usually called the Boussinesq approxi- 

mation.     It amounts to taking into account any density gradient that 

leads to a force (is multiplied  by g),  but no other.    Differentiating 

Eq.  6 with respect to time leads,   in view of Eq.  4,  to 

at2    ^ ax2 

where we have used the linear approximation, and have defined the 

Vais'al'a frequency 

N2 • - sf ar - ^»oc '8' 

which we will treat as a constant hereafter.    (Obviously, we could 

have chosen p    exponential,  instead of as given in Eq.   1.) 

Clearly,  in view of Eq.  4,   ftp can be obtained from f, so that 

Eq.   7, with the initial condition Eq.   2, is our problem. 

It begs for Fourier analysis,  and the (exact) answer is 



W '   * n 

6P 
•"2 / 

kdk J (ka) 
J^V k2

Z
?  >  (Nt ± kx)2) 

k z-  -.  (Nt ± kxT 
(9) 

where the ± means that the integral should be evaluated with each of 
the two signs,  and '"he results averaged.    The corresponding expression 
for \k is obtained from Eq.  9 by multiplying the integrand by 2N/k|J, 

and taking the difference of integrals for the two signs.     (There are 

other simpler ways to get the velocity distribution.) 

It is worth reemphasizing that Eq.   9 is the exact solution to a 

linear problem. 

FIGURE 1.     Initial Density Profile at x = 0 
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III. QUADRATURES 

The evaluation of Eq. 9 is greatly aided by the observation that 

the expression in the integrand involving the square roots admits of 

an expansion in terms or Tschebysheff polynomials of the second kind. 
2   2   2 Explicitly, if w = u + v - 2uv cos y, 

then 

JnCw) 

w      ^^ 
(1 + m) 

Jl^  Jl+.^ — Am  (cos Y) 
m = 0 

(10) 

where 

A (cos Y) = Sin iiUZlZH m    T       sin Y (11) 

Thus, after a bit of arithmetic, we find 

6D = ^Lc-i'4 cn+i) ^liT^ ^r^ 
i=0 

f J2(ka) J2.+1(kr) dk (12) 

Before proceeding to the final form,  scvne observations about Eq.  12 

are in order. 

- ■-- k^A^i^ 



First ft id foremost,  inside the original cylinder, where  r < a, 

only the fir-.t term in Eq.  12 is non-vanishing.    Tims, exactly, 

vMNt) 
6p  = 2ze —j^—;  r < a (13) 

The original linear (proportional to z) perturbation inside thd 

cylinder remains linear,  overshoots its correction,  anJ finally damps 
out. 

The fluid velocities for r < a are most easily obtained from 

Eq.   13,  by noting that  v    = -r ■^•(6p),  so that 
z   p ot 

v2 = -^fJ2(Nt) (14a) 

In view of the inoumpressibility condition (Eq. 4), we also have 

r.o that the fluid particles inside the original cylinder move on right 

hyperbolae, overshooting their ultimate positions on the first pass. 

The ultimate displacement of a fluid particle that starts inside the 

original cylinder is given by 

*-f 
(35) 

so that the fluid particle moves just far enough down its own hyper- 
bola to reach the level which is appropriate for it. In particular, 

the original circular cross section o.*: the cylinder deforms into an 

ellipse of semi-major axis a(l + "f-) and semi-minor axis a(l - -fO, 
P p 

after oscillating around this shape. 



We now turn to the behavior of the fluid for r > a, for which 

all terms except the first in Eq. 12 contribute. We need, for r > a, 

and for 1*1, 

I J2(ka)J2t+1(kr) dk 4a [h-i-2?i+ p^i+ ?iil '* H    a6) 

where the P    are conventional Legendre polynomials, whose argument  is 
2a^ 1 K-. The expression in square brackets can be written in other 
r^ 

forms, using the many identities involving the Legendre polynomials. 

If we define 

-i<?> - W?) GiW - p^co - 2Pt(?) + ?i+1io + ^nn 

=  - 2    (l-?)  P.(5) 

then the first two are given by 

- -L *i.lW 
n r^\ 

12a4  16a6 , etc. 

We have, then. 

(17) 

(18a) 

(18b) 

1=1 \   r / 
(19) 

2z 

r 
(20) 

r > a 
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2^ 
where  (again, with  5=1 5 ^ 

r 

2 

4a 

2 

It(?) = .iZi^Gt({) 

= (Jtn)Pt({) .£-j^ttl(,) -i'^?)) (2i) 

It  is now interesting to observe that,  as  r - a, H.(^) -  (-J)  {iK  ♦  1), 
so that 

M-+) = -^.E C03li^;1"] J-^11 <^1'    <"> 

Comparing this with Eq. 13, we find an exact expression for the 

density discontinuity across the surface of the cylinder 

AD  s  6o(r^a')  -  6p(r-.a   ) 

^E'^'-fe^^^ 
This sum can be extended to -»,  and carried out exactly. 

We find 

^p  = ez cos(Nt sin a) (24) 

an unexpected result.    From Eqs.  24 and 13, we find 

+    r ji(Nt) 1 6p(r^r)  = cz    2 -±JJ- cos(Nt  sin a)\ (25) 



which dooa not  fjo to zero aa I .■» ,  but which oscillates more 6nd more 

rapidly as a function of  a«     Such behavior is  indicative of an insta- 

bility in a more realistic calculation, though the relation to the 

expected Rayleigh instability on the surface  in  unclear. 

We turn finally to the behavior at  large distances, for which 

we need the behavior of  the H.  for 5 near unity 

[(2^i) f] ; H4(P)  - - (2t+l) J2   |(2^1) rl   1  r » a (26) 

in which we have also assumed  1 « i « —* for convenience.    It will 

be seen below that this  is the range of  interest  for I.    This leads 

to 

l4 ^ (.„WD ^lif^l %i^ J2 [(2t+1) ?] 6p 
r* 

1=1 (27) 

(Recall,  an always,  that   v    car  be obtained from 6P  through v    = 's--r* (6p), 

and v    from v    through the  incompressibility condition Eq.  4.) 

For any given point  (r,a) and time,  the terms  in the sum (Eq.  2 7) 

increase  in magnitude with l, and oscillate rapidly in sign,  so it is 

appropriate to look for a  "constant phase" value of I AS & means of 

estinating the sum.     By either this method,  or by a direct saddle- 

point  integration in Eq.   9, we find that 

öp -. 2cz^    tan a sin(Nt cos a) J2 (~~ sin aj (28) 

for r » a.    This represents a pulse of frequency N cos a, which 

passes a point (r, or) at a time t ~r ? *    The denominator is r r ' Na sin jy 

the group velocity of a wave of wave-number ~ 1/a,  in the correct 

direction, where N cos a is the frequency of such a wave.    (Recall 

that the group and phase velocities of Vaisal'a waves are mutually 

orthogonal.) 
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IV. CONCLUSIONS AND CAVEATS 

The behavior of the solution (Eq. 28) for large distances from 

the source contains no surprises, and represents the radiation from 

the source of the expected pulse of Vaisala waves, necessary to get 

rid of the energy stored in the initial perturbation. 

On the other hand, the behavior near the perturbation has a 

number of unrealistic features. The rapidly oscillating (in space) 

behavior just outside the original cylinder at long times cannot 

appear in the solution of a realistic hydrodynamic problem. Since 

the solution is exact, this difficulty must be ascribed to the model. 

In addition, the velocity of the fluid displays an infinite shear on 

the surface of the cylinder, and this too, in a realistic problem, 

would lead to Rayleigh instability. It would seem foolhardy, there- 

fore, to set e = B, and use a linear treatment to study the fully 

mixed wake collapse problem. 
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